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Abstract

Heatmap-based methods dominate in the field of hu-
man pose estimation by modelling the output distribu-
tion through likelihood heatmaps. In contrast, regression-
based methods are more efficient but suffer from inferior
performance. In this work, we explore maximum likeli-
hood estimation (MLE) to develop an efficient and effec-
tive regression-based methods. From the perspective of
MLE, adopting different regression losses is making differ-
ent assumptions about the output density function. A den-
sity function closer to the true distribution leads to a bet-
ter regression performance. In light of this, we propose
a novel regression paradigm with Residual Log-likelihood
Estimation (RLE) to capture the underlying output distri-
bution. Concretely, RLE learns the change of the distri-
bution instead of the unreferenced underlying distribution
to facilitate the training process. With the proposed repa-
rameterization design, our method is compatible with off-
the-shelf flow models. The proposed method is effective,
efficient and flexible. We show its potential in various hu-
man pose estimation tasks with comprehensive experiments.
Compared to the conventional regression paradigm, regres-
sion with RLE bring 12.4 mAP improvement on MSCOCO
without any test-time overhead. Moreover, for the first
time, especially on multi-person pose estimation, our re-
gression method is superior to the heatmap-based methods.
Our code is available at https://github.com/Jeff-sjtu/res-
loglikelihood-regression.

1. Introduction
Human pose estimation has been extensively studied

in the area of computer vision [23, 24, 1, 32, 21]. Re-
cently, with deep convolutional neural networks, significant
progress has been achieved. Existing methods can be di-
vided into two categories: heatmap-based [60, 59, 65, 4,
67, 57, 49, 55] and regression-based [61, 5, 56, 73, 45, 64].
Heatmap-based methods are dominant in the field of hu-
man pose estimation. These methods generate a likelihood
heatmap for each joint and locate the joint as the point
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Figure 1: Illustrasion of (a) heatmap-based method, (b)
standard regression paradigm, and (c) regression with the
proposed RLE.

with the argmax [59, 67, 49] or soft-argmax [43, 34, 57]
operations. Despite the excellent performance, heatmap-
based methods suffer from high computation and storage
demands. Expanding the heatmap to 3D or 4D (spatial +
temporal) will be costly. Additionally, it is hard to deploy
heatmap in modern one-stage methods.

Regression-based methods directly map the input to the
output joints coordinates, which is flexible and efficient for
various human pose estimation tasks and real-time applica-
tions, especially on edge devices. A standard heatmap head
(3 deconv layers) costs 1.4× FLOPs of the ResNet-50 back-
bone, while the regression head costs only 1/20000 FLOPs
of the same backbone. Nevertheless, regression suffer from
inferior performance. In challenging cases like occlusions,
motion blur, and truncations, the ground-truth labels are in-
herently ambiguous. Heatmap-based methods are robust to
these ambiguities by leveraging the likelihood heatmap. But
current regression methods are vulnerable to these noisy la-
bels.

In this work, we facilitate human pose regression by ex-
ploring maximum likelihood estimation (MLE) to model
the output distribution. From the perspective of MLE, stan-
dard Euclidean distance loss (`1 or `2) can be viewed as a
particular assumption that the output conforms to a distribu-
tion family (Laplace or Gaussian distribution) with constant
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variance. Intuitively, the regression performance can be im-
proved if we construct the likelihood function with the true
underlying distribution instead of the inappropriate hypoth-
esis.

To this end, we propose a novel and effective regres-
sion paradigm, named Residual Log-likelihood Estimation
(RLE), that leverages normalizing flows to estimate the
underlying distribution and boosts human pose regression.
Given a tractable preset assumption of the likelihood func-
tion, RLE estimates the residual log-likelihood, i.e. the
change of the distribution. It is easier to be optimized com-
pared to the original unreferenced underlying distribution.
Besides, we design a reparameterization strategy for the
flow model to learn the intrinsic characteristics of the un-
derlying distribution. This strategy makes our regression
framework feasible and allows us to utilize the off-the-shelf
flow model to approximate the distribution without a so-
phisticated network architecture.

During training, the regression model and the RLE mod-
ule can be optimized simultaneously. Since the form of the
underlying distribution is unknown, the RLE module is also
trained via the maximum likelihood estimation process. Be-
sides, the RLE module does not participate in the inference
phase. In other words, the proposed method can bring sig-
nificant improvement to the regression model without any
test-time overhead.

The proposed regression framework is general. It can be
applied to various human pose estimation algorithms (e.g.
two-stage approaches [48, 15, 13, 67, 55], one-stage ap-
proaches [73, 45, 64]) and various tasks (e.g. single and
multi-person 2D/3D pose estimation [1, 32, 21, 38, 23, 24]).
We benchmark the proposed method on three pose estima-
tion datasets, including MPII [1], MSCOCO [32] and Hu-
man3.6M [21]. With a simple yet effective architecture,
RLE boosts the conventional regression method by 12.4
mAP and achieves superior performance to the heatmap-
based methods. Moreover, it is more computation and stor-
age efficient than heatmap-based methods. Specifically,
on the MSCOCO dataset [32], our regression-based model
with ResNet-50 [16] backbone achieves 71.3 mAP with
4.0 GFLOPs, compared to 71.0 mAP with 9.7 GFLOPs of
heatmap-based SimplePose [67]. We hope our method will
inspire the field to rethink the potential of regression-based
methods.

The contributions of our approach can be summarized as
follows:

• We propose a novel and effective regression paradigm
with the reparameterization design and Residual Log-
likelihood Estimation (RLE). The proposed method
boosts human pose regression without any test-time
overhead.

• For the first time, regression-based methods achieve

superior performance to the heatmap-based methods,
and it is more computation and storage efficient.

• We show the potential of the proposed paradigm by
applying it to various human pose estimation methods.
Considerable improvements are observed in all these
methods.

2. Related Work
Heatmap-based Pose Estimation. The idea of utilizing
likelihood heatmaps to represent human joint locations is
proposed by Tompson et al. [60]. Since then, heatmap-
based approaches dominate in the field of 2D human pose
estimation. Pioneer works [60, 59, 65, 42] design pow-
erful CNN models to estimate heatmaps for single-person
pose estimation. Many works [48, 15, 13, 67, 30, 55] ex-
tend this idea to multi-person pose estimation following the
top-down framework, i.e. detection and single-person pose
estimation. In the bottom-up framework [51, 20, 22, 4, 41,
47, 8], multiple body joints are retrieved from the heatmaps
and grouped into different human poses. Pavlakos et al. [49]
first extend the heatmap to 3D space. The 3D heatmap rep-
resentation is followed by several works [57, 39, 7, 72, 62,
31]. Sun et al. [57] leverage the soft-argmax operation to re-
trieve joint locations from heatmaps in a differentiable man-
ner, which allows end-to-end training. It prevents quantiza-
tion error, but the model is still required to generate high-
resolution features and heatmaps.

Regression-based Pose Estimation. In the context of hu-
man pose estimation, only a few works are regression-
based. Toshev et al. [61] first leverage the convolutional
network for human pose estimation. Carreira et al. [5] pro-
pose an Iterative Error Feedback (IEF) network to improve
the performance of the regression model. Zhou et al. [73]
and Tian et al. [58] propose direct pose regression in the
one-stage object detection framework. Nie et al. [45] factor-
ize the long-range displacement into accumulative shorter
ones. However, it is vulnerable to occlusions. Wei et al. [64]
regress the displacement w.r.t. the pre-defined pose anchors.
In 3D pose estimation, Sun et al. [56] propose composi-
tional pose regression to learn the internal structures of 3D
human pose. Rogez et al. [53, 54] classify the human pose
into a set of K anchor-poses and a regression module is pro-
posed to refine the anchor to the final prediction. Two-stage
methods [36, 14, 50, 71, 63, 10, 33, 70] lift the 2D poses to
3D space by regression. But the 2D poses are still predicted
by the heatmap-based 2D pose estimator. Despite lots of
progress that have been made by previous works, there is
still a huge performance gap between the pure regression-
based approaches and the heatmap-based approaches.

In this work, for the first time, we improve the perfor-
mance of the regression-based approach to a comparable
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level of the heatmap-based approaches. Our method is flex-
ible and can be applied to various human pose estimation
algorithms.

Normalizing Flow in Human Pose Estimation. Some
recent works leverage normalizing flows to build priors in
3D human pose estimation. Xu et al. [68] propose new 3D
human shape and articulated pose models with the kine-
matic prior based on normalizing flows. Zanfir et al. [69]
use normalizing flows to build a prior on SMPL joint an-
gles for their weakly-supervised method. Biggs et al. [3]
learn a pose prior by normalizing flows to sample the best
output from the ambiguous image. Different from previous
methods, we leverage normalizing flows to estimate the un-
derlying output distribution.

Adaptive Loss Function. In our method, the output dis-
tribution is learnable, which resulting in a learnable loss
function. There have been several works towards adaptive
loss functions. Imani et al. [19] propose histogram loss,
which use histogram (i.e. heatmap) to represent the output
distribution. Some works define a superset of loss functions
and change the loss by tuning the parameters of the func-
tion. Wu et al. [66] using a teacher model to dynamically
change the loss function of the student model. Barron [2]
presents a generalization of common loss functions, which
automatically adapts itself during training. Different from
previous methods, we do not set the form of the distribu-
tion family in advance. The loss function can learn to be
arbitrary forms within the maximum likelihood estimation
framework.

3. Method
In this work, we aim at improving the performance of

the regression-based method to a competitive level of the
heatmap-based method. Compared with the heatmap-based
method, regression-based method has lots of merits: i) It
gets rid of the high-resolution heatmaps and has low com-
putation and storage complexity. ii) It has a continuous
output and does not suffer from the quantization problem.
iii) It can be extended to a wide variety of scenarios (e.g.
one-stage methods, video-based methods, 3D scenes) at a
minimal cost. However, existing regression-based methods
suffer from poor performance, which is fatal and restricts its
wide usage.

In this section, before introducing our solution, we first
review the general formulation of regression from the per-
spective of maximum likelihood estimation in §3.1. Then,
in §3.2, we present the Residual Log-likelihood Estimation
(RLE), an approach that leverages normalizing flows to cap-
ture the underlying residual log-likelihood function and fa-
cilitate human pose regression. Finally, the necessary im-

plementation details are provided in §3.3.

3.1. General Formulation of Regression

The standard regression paradigm is to apply `1 or `2
loss to the regressed output µ̂. Loss functions are empir-
ically chosen for different tasks. Here, we review the re-
gression problem from the perspective of maximum likeli-
hood estimation (MLE). Given an input image I, the regres-
sion model predicts a distribution PΘ(x|I) that indicates
the probability of the ground truth appearing in the location
x, where Θ denotes the learnable model parameters. Due
to the inherent ambiguities in the labels, the labelled loca-
tion µg can be viewed as an observation sampled near the
ground truth by the human annotator. The learning process
is to optimize the model parameters Θ that makes the ob-
served label µg most probable. Therefore, the loss function
of this maximum likelihood estimation (MLE) process is
defined as:

Lmle = − logPΘ(x|I)
∣∣∣
x=µg

. (1)

In this formulation, different regression losses are es-
sentially different hypotheses of the output probability dis-
tribution. For example, in some works of object detec-
tion [18, 29, 28] and dense correspondences [40], the den-
sity is assumed to be a Gaussian distribution. The model
needs to predict two values, µ̂ and σ̂, to construct the den-

sity function PΘ(x|I) = 1√
2πσ̂

e−
(x−µ̂)2

2σ̂2 . To maximize the
likelihood of the observed label µg , the loss function be-
comes:

L = − logPΘ(x|I)
∣∣∣
x=µg

∝ log σ̂ +
(µg − µ̂)2

2σ̂2 . (2)

If we assume the density function has a constant variance,
i.e. σ̂ is a constant, the loss degenerates to standard `2 loss:
L = (µg − µ̂)2. Further, if we assume the density fol-
lows the Laplace distribution with a constant variance, the
loss function becomes the standard `1 loss. In the inference
phase, the value µ̂ used to control the location of distribu-
tion serves as the regressed output.

From this perspective, the loss function depends on the
shape of the distribution PΘ(x|I). Therefore, a more accu-
rate density function could lead to better results. However,
since the analytical expression of the underlying distribu-
tion is unknown, the model can not simply regress several
values to construct the density function like Eq. 2. To esti-
mate the underlying distribution and facilitate human pose
regression, in the following section, we propose a novel re-
gression paradigm by leveraging normalizing flow.

3.2. Regression with Normalizing Flows

In this subsection, we introduce three variants of the pro-
posed paradigm that utilize normalizing flows for regression
(see Fig. 2).
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Basic Design. The basic design of the proposed regres-
sion paradigm with normalizing flows is illustrated in
Fig. 2(a). Here, normalizing flows [52, 11, 26, 46, 25] learn
to construct a complex distribution by transforming a sim-
ple distribution through an invertible mapping. We consider
the distribution PΘ(z|I) on a random variable z as the ini-
tial density function. It is defined by the output µ̂ and σ̂
from the regression model Θ. For simplicity, we assume

PΘ(z|I) = 1√
2πσ̂

e−
(z−µ̂)2

2σ̂2 , i.e. the Gaussian distribution.
A smooth and invertible mapping fφ : R2 → R2 is chosen
to transform z to x, i.e. x = fφ(z), where φ is the learnable
parameters of the flow model.

The transformed variable x follows another distribution
PΘ,φ(x|I). The probability density function PΘ,φ(x|I) de-
pends on both the regression model Θ and the flow model
fφ, which can be calculated as:

logPΘ,φ(x|I) = logPΘ(z|I) + log

∣∣∣∣∣det
∂f−1

φ

∂x

∣∣∣∣∣ , (3)

where f−1
φ is the inverse of fφ and z = f−1

φ (x). In this way,
given arbitrary x, the corresponding log-probability can be
estimated through Eq. 3 by reversely computing z. Besides,
PΘ,φ(x|I) is learnable and can fit arbitrary distribution as
long as fφ is complex enough. In practice, we can compose
several simple mappings successively to construct arbitrar-
ily complex functions, i.e. x = fφ(z) = fK◦· · ·◦f2◦f1(z).

The maximum likelihood process is performed on the
learned distribution PΘ,φ(x|I). Hence, the loss function
is formulated as:

Lmle = − logPΘ,φ(x|I)
∣∣∣
x=µg

= − logPΘ(f−1
φ (µg) | I)− log

∣∣∣∣∣det
∂f−1

φ

∂µg

∣∣∣∣∣ .
(4)

Note that the underlying optimal distribution Popt(x|I)
is unknown. The flow model is learned in an unsupervised
manner by maximizing the likelihood of the labelled loca-
tions. For example, for the challenging cases (e.g. occlu-
sions) with larger deviations in the labels from human an-
notators, the predicted distribution should have a large vari-
ance to maximize the log-probability.

Reparameterization. Although the basic design seems
reasonable, it is not feasible in practice. The learning of fφ

relies on the terms log

∣∣∣∣det
∂f−1
φ

∂µg

∣∣∣∣ and f−1
φ (µg) in the loss

function (Eq. 4). Therefore, φ will learn to fit the distribu-
tion of µg across all images. Nevertheless, the distribution
that we want to learn is about how the output deviates from
the ground truth conditioning on the input image, not the
distribution of the ground truth itself across all images.

µ̂

σ̂
Regression

Normalizing
Flow

PΘ,φ(x|I)PΘ(z|I)
Image

x = fφ(z)

(a) Basic Design

×
Normalizing

Flow

PΘ,φ(x|I)

Q(x̄)

Pφ(x̄)

Reparameterization

Residual
Log-likelihood

Gφ(x̄)

µ̂

σ̂
RegressionImage x = x̄ · σ̂ + µ̂

x̄ = fφ(z)

(c) Residual log-likelihood estimation with reparameterization

(b) Direct likelihood estimation with reparameterization

µ̂

σ̂
Regression

Reparameterization

Normalizing
Flow

PΘ,φ(x|I)

Pφ(x̄)N (0, I)

Image x = x̄ · σ̂ + µ̂

x̄ = fφ(z)

Figure 2: Illustrasion of the proposed regression frame-
works. (a) The basic design. (b) Direct likelihood esti-
mation with reparameterization. (c) Residual log-likelihood
estimation with reparameterization.

Here, to make our regression framework feasible and
compatible with the off-the-shelf flow models, we further
design the regression paradigm with the reparameterization
strategy. The new paradigm is illustrated in Fig. 2(b). We
assume all the underlying distribution share the same den-
sity function family but with different mean and variance
conditioning on the input I. Firstly, the flow model fφ
is leveraged to map a zero-mean initial distribution z̄ ∼
N (0, I) to a zero-mean deformed distribution x̄ ∼ Pφ(x̄).
Then the regression model Θ predicts two values, µ̂ and
σ̂, to control the position and scale of the distribution.
The final distribution PΘ,φ(x|I) is obtained by shifting and
rescaling x̄ to x, where x = x̄ · σ̂ + µ̂.

Therefore, the loss function with reparameterization can
be written as:

Lmle = − logPΘ,φ(x|I)
∣∣∣
x=µg

= − logPφ(µ̄g)− log

∣∣∣∣det
∂µ̄g
∂µg

∣∣∣∣

= − logPφ(µ̄g) + log σ̂,

(5)

where µ̄g = (µg − µ̂)/σ̂, and ∂µ̄g/∂µg = 1/σ̂. With the
reparameterization design, now the flow model can focus on
learning the distribution of µ̄g , which reflects the deviation
of the output from the ground truth.
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Residual Log-likelihood Estimation. After reparameter-
ization, the regression framework can be trained in an end-
to-end manner. The training of the regressed value µ̂ and
the flow model fφ are coupled together, depending on the
term logPφ(µ̄g) in the loss function (Eq. 5). However, there
are intricate dependencies between these two models. The
training of the regression model entirely relies on the dis-
tribution estimated by the flow model fφ. At the beginning
stage of training, the shape of the distribution is far from
correct, which increases the difficulty to train the regression
model and might degrade the model performance.

To facilitate the training process, we develop a gradient
shortcut to reduce the dependence between these two mod-
els. Formally, the distribution estimated by the flow model
Pφ(x̄) is trying to fit the optimal underlying distribution
Popt(x̄), which can be split into three terms:

logPopt(x̄) = log

(
Q(x̄) · Popt(x̄)

s ·Q(x̄)
· s
)

= logQ(x̄) + log
Popt(x̄)

s ·Q(x̄)
+ log s,

(6)

where the termQ(x̄) can be a simple distribution, e.g. Gaus-
sian distribution Q(x̄) = N (0, I), the term log

Popt(x̄)
s·Q(x̄) is

what we call residual log-likelihood, and the constant s is
to make sure the residual term is a distribution. We assume
thatQ(x̄) can roughly match the underlying distribution but
not perfectly. The residual log-likelihood is to compen-
sate for the difference. Thus, we split the log-probability
of Pφ(x̄) the same way as Eq. 6:

logPφ(x̄) = logQ(x̄) + logGφ(x̄) + log s, (7)

where Gφ(x̄) is the distribution learned by the flow model.
The value of s = 1∫

Gφ(x̄)Q(x̄)dx̄
can be approximated by

the Riemann sum. The derivation of s is provided in the
supplemental document.

In this way, Gφ(x̄) will try to fit the underlying resid-
ual likelihood Popt(x̄)

s·Q(x̄) instead of learning the entire distri-
bution. Finally, combining the reparameterization design
(Eq. 5) and residual log-likelihood estimation (Eq. 7), the
total loss function can be defined as:

Lrle = − logPΘ,φ(x|I)
∣∣∣
x=µg

= − logPφ(µ̄g) + log σ̂

= − logQ(µ̄g)− logGφ(µ̄g)− log s+ log σ̂.

(8)

This process is illustrated in Fig. 2(c).
During training, the backward propagated gradients from

Q(µ̄g) do not depend on the flow model, which accelerates
the training of the regression model. Besides, as the hypoth-
esis of ResNet [16], it is easier to optimize the residual map-
ping than to optimize the original unreferenced mapping.

To the extreme, if the preset approximation Q(x̄) is opti-
mal, it would be easier to push the residual log-probability
to zero than to fit an identity mapping by a stack of invert-
ible mappings in fφ. The effectiveness of the residual log-
likelihood estimation is validated in §4.1.

3.3. Implementation Details

In the training phase, the regression model and the flow
model are simultaneously optimized in an end-to-end man-
ner. We replace the standard regression loss (`1 and `2)
with the proposed residual log-likelihood estimation loss
Lrle. The initial density is set to Laplace distribution by
default. In the testing phase, the predicted mean µ̂ serves
as the regressed output. Therefore, the flow model does not
need to be run during inference. This characteristic makes
the proposed method flexible and easy to apply to various
regression algorithms without any test-time overhead. Be-
sides, the prediction confidence can be obtained from σ̂:

ĉ = 1− 1

K

K∑

i

σ̂i, (9)

where σ̂i is the learned deviation of the ith joint, and K
denotes the total number of joints. The deviation σ̂i is pre-
dicted with a sigmoid function. Hence we have σ̂i ∈ (0, 1)
and ĉ ∈ (0, 1).

Flow Model. The proposed regression paradigm is agnos-
tic to the flow models. Hence, various off-the-shelf flow
models [52, 11, 26, 46, 25] can be applied. In the experi-
ments, we adopt RealNVP [11] for fast training. We denote
the invertible function with Lfc fully-connected layers with
Nn neurons as Lfc × Nn. We set Lfc = 3 and Nn = 64
by default. The flow model is light-weighted and barely af-
fects the training speed. More detailed descriptions of the
flow model architecture are provided in the supplemental
document (§A).

Tasks. The proposed regression paradigm is general and
is ready for various human pose estimation tasks. In the ex-
periments, we validate the proposed regression paradigm on
seven different algorithms in five tasks: single-person 2D
pose estimation, top-down 2D pose estimation, one-stage
2D pose estimation, single-stage 3D pose estimation and
two-stage 3D pose estimation. Detailed training settings are
provided in §4 and §5. The experiments on single-person
2D pose estimation are provided in the supplemental docu-
ment.

4. Experiments on COCO
We first evaluate the proposed regression paradigm on a

large-scale in-the-wild 2D human pose benchmark COCO
Keypoint [32].
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Method # Params GFLOPs AP AP50 AP75

Direct Regression (with `1) 23.6M 4.0 58.1 82.7 65.0
Regression with DLE 23.6M 4.0 62.7 86.1 70.4
Regression with RLE 23.6M 4.0 70.5 88.5 77.4
*Regression with RLE 23.6M 4.0 71.3 88.9 78.3

Table 1: Comparison with the conventional regression
paradigm. RLE provides significant improvements with
the same test-time computational complexity.

Method AP AP50 AP75

(a)
SimplePose [67] 71.0 89.3 79.0

Integral Pose [57] 63.0 85.6 70.0
*Regression with RLE 71.3 88.9 78.3

(b) HRNet-W32 [55] 74.1 90.0 81.5
HRNet-W32 + RLE (Regression) 74.3 89.7 80.8

(c) Mask R-CNN [15] 66.0 86.9 71.5
Mask R-CNN + RLE 66.7 86.7 72.6

(d) PointSet Anchor [64] 67.0 87.3 73.5
PointSet Anchor + RLE 67.4 87.5 73.9

Table 2: Comparison with heatmap-based methods on
COCO validation set. The proposed paradigm achieves
competitive performance to the heatmap-based methods.

Implementation Details. We embed RLE into the top-
down approaches and a one-stage approach. For the top-
down approach, we adopt a simple architecture consisting
of a ResNet-50 [16] backbone, followed by an average pool-
ing layer and an FC layer. The FC layer consists of K × 4
neurons, where 4 is for µ̂ and σ̂, and K = 17 denotes the
number of body keypoints. For human detection, we use the
person detectors provided by SimplePose [67] for both the
validation set and the test-dev set. Data augmentations and
training settings follow previous work [55]. The end-to-end
approach, Mask R-CNN [15], is also adopted for ablation
study. Implementation is based on Detectron2 [12]. The
keypoint head is a stack of 8 convolutional layers, followed
by an average pooling layer and an FC layer. We train for
270, 000 iterations, with 4 images per GPU and 4 GPUs in
total. Other parameters are the same as the original Detec-
tron2.

For the one-stage approach, we adopt the state-of-the-art
method [64]. We replace its 2K-channel regression head
with a 4K-channel head for the prediction of both µ̂ and σ̂.
Implementation is based on the official code of [64]. The
other training details are the same as them.

4.1. Main Results

Comparison with Conventional Regression. To study
the effectiveness of the proposed regression paradigm, we
compare it with the conventional direct regression method.
The direct regression model has the same “ResNet-50 +
FC” architecture, and `1 loss is adopted. The experimen-
tal results on COCO validation set are shown in Tab. 1.

Method Backbone AP AP50 AP75 APM APL

Heatmap-based
CMU-Pose [4] 3CM-3PAF 61.8 84.9 67.5 57.1 68.2
Mask R-CNN [15] ResNet-50 63.1 87.3 68.7 57.8 71.4
G-RMI [48] ResNet-101 64.9 85.5 71.3 62.3 70.0
RMPE [13] PyraNet 72.3 89.2 79.1 68.0 78.6
AE [41] Hourglass-4 65.5 86.8 72.3 60.6 72.6
PersonLab [47] ResNet-152 68.7 89.0 75.4 64.1 75.5
CPN [6] ResNet-Inception 72.1 91.4 80.0 68.7 77.2
SimplePose [67] ResNet-152 73.7 91.9 81.1 70.3 80.0
Integral [57] ResNet-101 67.8 88.2 74.8 63.9 74.0
HRNet [55] HRNet-W48 75.5 92.5 83.3 71.9 81.5
EvoPose [37] EvoPose2D-L 75.7 91.9 83.1 72.2 81.5

Regression-based
CenterNet [73] Hourglass-2 63.0 86.8 69.6 58.9 70.4
SPM [45] Hourglass-8 66.9 88.5 72.9 62.6 73.1
PointSet Anchor [64] HRNet-W48 68.7 89.9 76.3 64.8 75.3
ResNet + RLE (Ours) ResNet-152 74.2 91.5 81.9 71.2 79.3
*ResNet + RLE (Ours) ResNet-152 75.1 91.8 82.8 72.0 80.2
HRNet + RLE (Ours) HRNet-W48 75.7 92.3 82.9 72.3 81.3

Table 3: Comparison with the SOTA on COCO test-dev.

As shown, the proposed method brings significant improve-
ment (12.4 mAP) to the regression-based method. Then we
compare the result with direct likelihood estimation (DLE)
to study the effectiveness of residual log-likelihood esti-
mation. The DLE model only adopts the reparameteriza-
tion strategy and no residual log-likelihood estimation. It is
seen that the residual manner provides 7.8 mAP improve-
ments. Like previous work [57], we further adopt the net-
work backbone that pre-trained by the heatmap loss. This
model achieves the best performance with 71.3 mAP, which
is denoted with ∗.

Note that the flow model does not participate in the infer-
ence phase. Therefore, no extra computation is introduced
in testing. Besides, the training overhead of the flow model
is negligible. Detailed results are reported in the supple-
mental document (§B). These experiments demonstrate the
superiority of the proposed regression paradigm.

Comparison with Heatmap-based Methods. We further
compare our regression method with heatmap-based meth-
ods. As shown in Tab. 2(a), our regression method outper-
forms Integral Pose [57] by 7.5 mAP, and the heatmap su-
pervised SimplePose [67] by 0.3 mAP. For the first time, the
direct regression method achieves superior performance to
the heatmap-based method.

In Tab. 2(b), we also implement RLE with HRNet [55] to
show our approach is flexible and can be easily embedded
into various backbone networks. Since HRNet maintains
high resolution throughout the whole process, we adopt
soft-argmax to produce coordinates µ̂ and an FC layer to
produce σ̂. It shows that integral with RLE surpasses con-
ventional heatmap by 0.2 mAP.

Tab. 2(c) shows the superiority of RLE on Mask R-CNN,
the end-to-end top-down approach. Our regression ver-
sion outperforms the heatmap-based Mask R-CNN by 0.7
mAP. In Tab. 2(d), RLE brings 0.4 mAP improvement to
the state-of-the-art one-stage approach. Note that the out-
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Figure 3: Qualitative results on COCO dataset: containing crowded scenes, occlusions and appearance change.

Method Correlation

SimplePose (Heatmap) 0.479
Regression with Gaussian 0.476
Regression with Laplace 0.522

RLE (Q(x̄) ∼ Gaussian) 0.540
RLE (Q(x̄) ∼ Laplace) 0.553

Table 4: Correlation testing on dif-
ferent methods.

Method #Params GFLOPs
GFLOPs

of Net. Head AP

Heatmap-based
Integral Pose [57] 34.0M 9.7 5.7 63.4
SimplePose [67] 34.0M 9.7 5.7 71.0

Regression-based
*Regression with RLE 23.6M 4.0 0.0002 71.3

Table 5: Computation complexity and model
parameters.

Lfc ×Nn AP AP50 AP75

3× 64 70.5 88.5 77.4
3× 128 70.2 88.5 77.3
3× 256 69.6 87.9 76.5
5× 32 70.0 88.2 76.8
5× 64 70.3 88.7 77.4

Table 6: Different RealNVP
Architecture.

Distribution AP AP50 AP75

Const. Variance Gaussian (`2) 36.6 70.9 33.6
Const. Variance Laplace (`1) 58.1 82.7 65.0

Gaussian 60.2 82.9 66.6
Laplace 67.4 86.8 74.2

RLE (Q(x̄) ∼ Gaussian) 70.0 88.1 76.7
RLE (Q(x̄) ∼ Laplace) 70.5 88.5 77.4

Table 7: Initial Density: Performance with different hy-
potheses of the output distribution.

put of PointSet Anchor [64] relies on the heatmap predic-
tions. The regressed values are used for joint association.
The superiority of RLE is demonstrated by embedding it in
various approaches.

Comparison with the SOTA on COCO test-dev In this
experiment, we compare the proposed RLE with the state-
of-the-art methods on COCO test-dev. Quantitative re-
sults are reported in Tab. 3. The proposed regression
paradigm significantly outperforms other regression-based
methods by 7.0 mAP and achieves state-of-the-art perfor-
mance. Compared to the same backbone heatmap-based
methods, our regression method is 1.4 mAP higher with
ResNet-152 and 0.2 mAP higher with HRNet-W48. We
demonstrate that heatmap is not the only solution to human
pose estimation. Regression-based methods have great po-
tential and can achieve superior performance than heatmap-
based methods. Qualitative results are shown in Fig. 3.

Correlation with Prediction Correctness. The esti-
mated standard deviation σ̂ establishes the correlation with
the prediction correctness. The model will output a larger
σ̂ for a more uncertain result. Therefore, σ̂ plays the same
role as the confidence score in the heatmap. We transform

the deviation to confidence with Eq. 9. To analysis the cor-
relation of σ̂ and the prediction correctness, we calculate
the Pearson correlation coefficient between the confidence
and the OKS to the ground truth on the COCO validation
set. The confidence of the heatmap-based prediction [67] is
the maximum value of the heatmap. Tab. 4 reveals that RLE
has much a stronger correlation to OKS than the heatmap-
based method (relative 15.2% improvement). In real-world
applications and other downstream tasks, a reliable confi-
dence score is useful and necessary. RLE address the lack
of confidence scores in regression-based methods and pro-
vide a more reliable score than the heatmap-based methods.

Computation Complexity. The experimental results of
computation complexity and model parameters are listed
in Tab. 5. The proposed method achieves comparable
results to the heatmap-based methods with significantly
lower computation complexity and fewer model parame-
ters. Specifically, the total FLOPs are reduced by 58.8%,
and the parameters are reduced by 30.6%. We further cal-
culate the FLOPs of the network head to remove the influ-
ence of the network backbone. It shows that the FLOPs of
the regression head is only 1/28500 of the heatmap head,
which is almost negligible. The computational superiority
of our proposed regression paradigm is of great value in the
industry.

4.2. Ablation Study

RealNVP Architecture. In Tab. 6, we compare different
network architectures of the RealNVP [11] model. It shows
that the final AP keeps stable with different RealNVP archi-
tectures. We argue that learning the residual log-likelihood
is easy for the flow model. Thus the results are robust to the
change of the architecture.
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Initial Density. To examine how the assumption of the
output distribution affects the regression performance in the
context of MLE, we compare the results of different den-
sity functions with our method. The Laplace distribution
and Gaussian distribution will degenerate to standard `1 and
`2 loss if they are assumed to have constant variances. As
shown in Tab. 7, the learned distributions of our method
provide more than 21.3% improvements. Besides, we study
the baselines that assuming the output follows the Gaus-
sian and Laplace distributions with the learnable deviation
σ. The distributions with learnable σ outperform those with
constant variance, but are still inferior to RLE.

Moreover, different initial densities Q(x̄) for RLE are
also tested. There is a large gap between the original Gaus-
sian and Laplace distribution. However, with RLE to learn
the change of the density, the difference between these two
distributions is significantly reduced. It demonstrates that
RLE is robust to different assumptions of the initial density.

5. Experiments on Human3.6M
Human3.6M [21] is an indoor benchmark for 3D pose es-

timation. For evaluation, MPJPE and PA-MPJPE are used.
Following typical protocols [57, 39], we use (S1, S5, S6,
S7, S8) for training and (S9, S11) for evaluation.

Implementation Details. For the single-stage approach,
we adopt the same ResNet-50 + FC architecture. The input
image is resized to 256× 256. Data augmentation includes
random scale (±30%), rotation (±30◦), color (±20%) and
flip. The learning rate is set to 1× 10−3 at first and reduced
by a factor of 10 at the 90th and 120 epoch. We use the
Adam solver and train for 140 epochs, with a mini-batch
size of 32 per GPU and 8 GPUs in total. The 2D and 3D
mixed data training strategy (MPII + Human3.6M) is ap-
plied. The testing procedure is the same as the previous
works [57].

For the two-stage approach, we embed the proposed re-
gression paradigm into the classic baseline [36] and the
state-of-the-art model [70]. 2D ground-truth poses are
taken as inputs. For data normalization, we follow previ-
ous works [70, 50, 71]. The initial learning rate is 1× 10−3

and decays 5% after each epoch. We use the Adam solver
and train for 80 epochs, with a mini-batch size of 1024.

Ablation Study. In Tab. 8, we report the performance
comparison between RLE and the baselines on both single-
stage and two-stage approaches. It is seen that RLE reduces
the error of single-stage regression baseline by 1.5 mm and
the heatmap-based Integral Pose [57] by 0.6 mm. Besides,
without 3D heatmaps, our regression method significantly
reduces the FLOPs by 61.7% and the model parameters by
30.6%. For the two-stage approach, RLE brings 2.7 mm im-

Method #Params GFLOPs MPJPE ↓ PA-MPJPE ↓
Single-stage
Direct Regression 23.8M 5.4 50.1 39.3
Integral Pose [57] 34.3M 14.1 49.2 39.1
Regression with RLE 23.8M 5.4 48.6 38.5

Two-stage
FC Baseline 4.3M 0.275 43.6 33.2
FC Baseline + RLE 4.3M 0.275 40.9 31.1

Table 8: Ablation study on Human3.6M.

Method
Sun
[56]

Nibali
[44]

Sun
[57]

Moon
[39]

Zhou
[72] Ours

#Params - 57.9M 34.3M 34.3M 49.6M 23.8M
GFLOPs - 29.3 14.1 14.1 41.4 5.4
MPJPE 59.1 49.5 49.6 53.3 47.7 48.6

Table 9: Single-stage Results on Human3.6M.

Method
Choi
[10]

Martinez
[36]

Zhao
[71]

Fang
[14]

Liu
[33]

Zeng
[70] Ours

MPJPE 55.5 45.5 43.8 42.5 37.8 36.5 36.3

Table 10: Two-stage Results on Human3.6M. Our result
is based on SRNet [70] with RLE.

provement to the regression baseline without any test-time
overhead.

Comparison with the State-of-the-art. In this experi-
ment, we compare the proposed regression paradigm with
both single-stage and two-stage state-of-the-art methods in
Tab. 9 and Tab. 10. For single-stage, our method achieves
comparable performance to the state-of-the-art methods
while reducing the FLOPs by 86.7%. The model parameters
and FLOPs are calculated using the official code of these
methods. Note that [72] only releases the testing code. For
fare comparison, we re-train the model with the same train-
ing settings as ours. For two-stage, our method is based
on SRNet [70] with RLE. It achieves state-of-the-art per-
formance by 0.2 mm improvement to the original SRNet.

6. Conclusion

In this paper, we propose a novel and effective regres-
sion paradigm from the perspective of maximum likelihood
estimation. The learning process is to maximize the prob-
ability of the observation. We leverage the normalizing
flow model to learn the residual log-likelihood w.r.t. to the
tractable initial density function. Comprehensive experi-
ments are conducted to validate the efficacy of the proposed
paradigm. For the first time, the regression-based methods
achieve superior performance to the heatmap-based meth-
ods. Regression-based methods are efficient and flexible.
We hope our method would inspire the field to rethink the
potential of regression.
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Appendix

In the supplemental document, we provide:

§A A more detailed explanation of normalizing flows and
RealNVP [11].

§B Experiments on MPII dataset.

§C Additional ablation experiments.

§D Visualization of the learn distribution.

§E The derivation of s in RLE.

§F Pseudocode for the proposed method.

§G Qualitative results on COCO, MPII and Human3.6M
datasets.

§H Extended experiments on retina OCT segmantation
dataset.

A. Normalizing Flows

The idea of normalizing flows is to represent a complex
distribution Pφ(x̄) by transforming a much simpler distri-
bution P (z̄) with a learnable function x̄ = fφ(z̄). As de-
scribed in §3.2, the probability of Pφ(x) is calculated as:

logPφ(x̄) = logP (z̄) + log

∣∣∣∣∣det
∂f−1

φ

∂x̄

∣∣∣∣∣ . (10)

The function fφ must be invertible since we need to cal-
culate z̄ = f−1

φ (x̄). In practice, we can compose several
simple mappings successively to construct arbitrarily com-
plex functions, i.e. x = fφ(z) = fK ◦· · ·◦f2◦f1(z), where
K denotes the number of mapping functions and zK = x.
The log-probability of x becomes:

logPΘ(x|I) = logPΘ(z|I) +

K∑

k=1

log

∣∣∣∣det
∂f−1

k

∂zk

∣∣∣∣ . (11)

FLOPs #Params AP AP50 AP75

3× 64 1.8M 53.8K 70.5 88.5 77.4
3× 128 6.9M 205.8K 70.2 88.5 77.3
3× 256 27.3M 804.8K 69.6 87.9 76.5
5× 32 1.3M 40.0K 70.0 88.2 76.8
5× 64 5.2M 153.6K 70.3 88.7 77.4

Table 11: Computation complexity and parameters of
RealNVP during training.

RealNVP. In our paper, we adopt RealNVP [11] to learn
the underlying residual log-likelihood. RealNVP design
each layer fk as:

fk(z̄k−1,0:d, z̄k−1,d:D)

=(z̄k−1,0:d, z̄k−1,d:D � egk(z̄k−1,0:d + hk(z̄k−1,0:d)),
(12)

where gk, hk : Rd → RD−d are two arbitrary neural net-
works, D is the dimension of the input vectors, and d is
the splitting location of the D-dimensional variable. The
� operator represents the pointwise product. In order to
chain multiple functions fk, the input is permuted before
each step. K is set to 6 in our experiments. In each function
fk, we adopt Lfc fully-connected layers with Nn neurons
for both gk and hk. Each fully-connected layer is followed
by a Leaky-RELU [35] layer.

Computation Complexity. The RealNVP model is fast
and light-weighted. The computation complexity and
model parameters during training are listed in Tab. 11. It
is seen that the flow models are computational and storage
efficient. The overhead during training is negligible.

B. Experiments on MPII
In multi-person pose estimation, the final mAP is af-

fected by both the location accuracy and the confidence
score. To study how RLE affect the location accuracy and
eliminate the impact of the confidence score, we evaluate
the proposed regression paradigm on MPII [1] dataset. Fol-
lowing previous settings [57], PCK and AUC are used for
evaluation. We adopt the same ResNet-50 + FC model for
single-person 2D pose estimation. Data augmentations and
training settings are similar to the experiments on COCO.

Ablation Study. Tab. 12 shows the comparison among
methods using heatmaps, direct regression and RLE. RLE
surpasses the direct regression baseline. While MPII is less
challenging than COCO, the improvement is still significant
on PCKh@0.1 (relative 13.1%) with high localization accu-
racy requirement. Compared to the heatmap-based method,
RLE achieves comparable performance (5.1% PCKh@0.1
higher, 1.8% PCKh@0.5 lower and 1.9% AUC lower), and
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Method PCKh@0.5 PCKh@0.1 AUC

Direct Regression 83.8 23.6 52.6
SimplePose (Heatmap) [67] 87.1 25.4 56.2

Regression with RLE 85.5 26.7 55.1
*Regression with RLE 85.8 27.1 55.5

Table 12: Effect of Residual Log-likelihood Estimation
on MPII validation set.

Method MPII Human3.6M

PCKh@0.5 PCKh@0.1 AUC MPJPE PA-MPJPE

DLE 84.3 25.3 53.5 51.0 39.8
RLE 85.5 26.7 55.1 48.6 38.5

Table 13: Comparison between DLE and RLE on MPII
and Human3.6M.

Method reg. loss weight hm. loss weight AP

Direct Regression (`1) 1 1 57.5
Direct Regression (`1) 1 0.5 56.7
Direct Regression (`1) 1 0 58.1

RLE 1 1 70.4
RLE 1 0.5 70.2
RLE 1 0 70.5

Table 14: Effect of the auxiliary heatmap loss.

the pre-trained model achieves the best PCKh@0.1 results.
RLE shows the superiority in high precision localization.

C. Ablation Study

Comparison between DLE and RLE. In this work, di-
rect likelihood estimation (DLE) refers to the model that
only adopts the reparameterization strategy to estimate
the likelihood function. The comparison is conducted on
COCO [32] validation set in the paper. Here, we provide
more comparison results on MPII [1] and Human3.6M [21]
datasets (Tab. 13). It is seen that RLE shows consistent im-
provements over DLE.

Auxiliary Heatmap Loss. In this experiment, we add an
auxiliary heatmap loss to the regression model and study its
effect. The regression models follow the top-down frame-
work with the “ResNet-50 + FC” architecture. To train the
model with the auxiliary loss, the ResNet-50 backbone is
followed by 3 deconv layers as SimplePose [67] to gener-
ate heatmaps. The deconv layers are parallel to the FC layer.
Thus the model can predict both heatmaps and the regressed
coordinates. It shows that multi-task loss barely brings per-
formance improvements.

Ankle Knee Hip Wrist Elbow Shoulder Head

Ankle 135.79 60.2 22.72 86.71 70.05 52.09 50.16
Knee 91.45 70.56 23.73 94.64 72.31 55.71 53.58
Hip 87.98 64.04 28.78 153.02 107 78.98 77.15

Wrist 80.77 56.05 27.44 216.17 127.28 74.29 77.85
Elbow 80.25 57.46 27.87 212.46 156.66 77.71 68.85

Shoulder 73.3 48.01 24.5 146.64 113.5 97.39 159.67
Head 68.71 44.44 21.62 85.87 69.43 52.25 53.39

Table 15: Per joint occlusion sensitivity analysis of Inte-
gral Pose [57].

Ankle Knee Hip Wrist Elbow Shoulder Head

Ankle 117.86 59.69 19.76 83.93 66.68 51.08 48.83
Knee 94.96 68.27 20.64 92.77 72.96 54.24 50.69
Hip 88.39 57.46 19.98 139.47 100.86 75.25 75.79

Wrist 83.06 53.64 21.3 200.18 125.16 73.51 74.73
Elbow 81.45 55.05 24.38 208.01 154.6 76.82 67.06

Shoulder 95.77 54.76 20.93 152.28 118.28 96.01 162.34
Head 72.27 44.44 18.65 83.34 66.14 49.81 48.73

Table 16: Per joint occlusion sensitivity analysis of RLE.

Robustness to Occlusion. The regression-based methods
predict the body joints in a holistic manner, meaning that
they would predict all joints even in cases of occlusions and
truncations. In this experiment, we study the impact of oc-
clusion on RLE compared with the heatmap-based method.
Similar to PARE [27], we add gray squares on the areas of
various joints and study the impact on other joints. Results
of Integral Pose [57] and RLE are reported in Table. 15 and
Table. 16, respectively. It is seen that RLE improves the
occlusion robustness of all joints.

Robustness to Truncation. When facing truncations,
regression-based methods can infer the joints outside the in-
put image, while heatmap-based methods failed. This char-
acteristic of regression-based methods makes them robust to
crowded cases, where human detection methods are prone
to fail. Qualitative comparison between the heatmap-based
method and RLE on truncations are shown in Fig. 5. Only
the contents inside the bounding boxes are fed to the pose
estimation models.

D. Visualization of the Learned Distribution

The visualization of the learned distribution is illustrated
in Fig. 4. The learned distribution has a more sharp peak
than the Gaussian distribution and a more smooth edge than
the Laplace distribution.

E. Derivation of s in RLE

As Eq. 7 in the paper, we have:

logPφ(x̄)dx̄ = logQ(x̄) + logGφ(x̄) + log s. (13)
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(a) The learned distribution (b) Standard Laplace distribution (c) Standard Gaussian distribution

Figure 4: Visualization of (a) the learned distribution, (b) Laplace distribution, and (c) Gaussian distribution.
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Figure 5: Qualitative comparison on truncations. Top:
RLE. Bottom: Heatmap-based SimplePose. Only the con-
tents inside the bounding boxes (blue) are fed to models.

Thus Pφ(x̄) = Q(x̄)Gφ(x̄)s. Since Pφ(x̄) should be a dis-
tribution, its integral equals to one:

∫
Pφ(x̄) =

∫
Q(x̄)Gφ(x̄)sdx̄

= s

∫
Q(x̄)Gφ(x̄)dx̄ = 1.

(14)

We obtain:
s =

1∫
Q(x̄)Gφ(x̄)dx̄

. (15)

The integral is approximate by the Riemann sum. There-
fore, within the interval [a, b], the value of s can be calcu-
lated as:

s ≈ 1
∑N
i=1Q(a+ i∆x)Gφ(a+ i∆x)∆x

, (16)

where ∆x = b−a
N and N is the total number of subinter-

vals. The interval can set to [−5, 5] in practice, since the
value of Q(x̄) is close to zero outside this interval. To ac-
curately calculate s, N should be large enough to obtain a

Loss FLOPs of RealNVP AP AP50 AP75

DLE 1.8M 62.7 86.1 70.4
RLE (Q+G) 1.8M 70.5 88.5 77.4

RLE (Q+G+ s) 44.2M 70.5 88.6 77.4

Table 17: Effectiveness of RLE on COCO validation set.
FLOPs in the training phase are reported.

small step ∆x. In other words, the flow model needs to
run N times for calculation, which takes additional compu-
tation resources. Interestingly, in our experiments, we find
that the term log s in the loss function is not necessary. As
shown in Tab. 17, the effectiveness of RLE over DLE comes
from the gradient shortcut in Q(x̄). The term s barely af-
fects the results and can be removed to save computation
resources. Therefore, in our implementation, we drop the
term log s for simplicity.

F. Pseudocode for the Proposed Method

The pseudocode of the proposed regression paradigm is
given in Alg. 1 (training) and Alg. 2 (inference). It is seen
in Alg. 2 that the flow model does not participate in the
inference phase. Thus the proposed method won’t cause
any test-time overhead.
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Figure 6: Qualitative results on COCO dataset: containing crowded scenes, occlusions, appearance change and motion blur.

Algorithm 1 Pseudocode for training in a PyTorch-like style.

# Training
for imgs, gt_mu in train_loader:

# Regression model predicts ‘hat_mu’, ‘hat_sigma’
to control the position and scale

hat_mu, hat_sigma = reg_model(imgs)

# Calculate the deviation ‘bar_mu’
bar_mu = (gt_mu - hat_mu) / hat_sigma

# Estimate the log-probability of ‘bar_mu’ from the
flow model

log_phi = flow_model.log_prob(bar_mu)

if use_residual:
# Loss for residual log-likelihood estimation
# Q is the preset density function
loss = - torch.log(Q(bar_mu)) - log_phi + torch.

log(hat_sigma)
else:

# Loss for direct log-likelihood estimation
loss = - log_phi + torch.log(hat_sigma)

Algorithm 2 Pseudocode for inference in a PyTorch-like style.

# Inference
for imgs in test_loader:

# Run the regression model
hat_mu, hat_sigma = reg_model(imgs)

# Calculate the confidence scores
conf = 1 - torch.mean(hat_sigma, dim=1)

output = dict(
coord=hat_mu,
confidence=conf

)

G. Qualitative Results

Additional qualitative results on COCO, MPII and Hu-
man3.6M datasets are shown in Fig. 6, Fig. 7 and Fig. 8.

Method Mean Error

Direct Regression 18.1

Regression with RLE 3.1

Table 18: Effect of Residual Log-likelihood Estimation
on DME dataset.

H. Experiments on Retina Segmentation
To study the effectiveness and generalization of the pro-

posed regression paradigm, we conduct experiments on
boundary regression for retina segmentation from optical
coherence tomography (OCT). We evaluate our methods on
the publicly available DME dataset [9]. It contains 110 B-
scans from 10 patients with severe DME pathology.

We follow the model architecture of the previous
method [17] and replace the output layer with a fully-
connected layer for regression. The learning rate is set to
1×10−4. We use the Adam solver and train for 200 epochs,
with a mini-batch size of 2. Quantitative results are reported
in Tab. 18. It shows that RLE significantly reduces the re-
gression error. We hope our method can be extended to
more areas and bring a new perspective to the community.
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Figure 7: Qualitative results on MPII dataset.

Figure 8: Qualitative results on Human3.6M dataset.
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